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In this note we derive the most general relativistic transformation law 
of quantum fields from the Relativity Principle. In the special case of 
frame-independent fields it reduces to the familiar forms [compare equation 
(8)] of the current QFT ( - q u a n t u m  field theory), due originally to Wigner. 
This is a modified, and perhaps simpler, version of that reported in a previous 
paper (Ingraham, 1962). 

Just a word of motivation. This more general relativistic formalism is 
not just a mathematical curiosity, but should be of vital interest because it 
allows the incorporation of a cut-off]- into quantum fields and thus into 
the S-matrix, while the conventional formalism does not (the latter is not 
proven, but forty years of vain effort in field theory teaches us this). In 
other words, we suggest that the unnecessarily restrictive form of relativistic 
invariance currently used is mainly responsible for QFT's well-known 
pathology. 

Start with the set of equivalent 'observers', or frames, 5r s162 5r .... 
~o stands for a space-time frame and comprises also the 'coordinate frame', 
or basis, in state vector Hilbert Space J4 ~ when we are talking about QFT. 
Equivalent means that the theory should not prefer one to another, that 
they are intrinsically indistinguishable. Consider the orthonormal basis~ 
]0), ]k), ]k i ,k2) ,  etc. where ]0) is the no-meson state (vacuum), ]k) is a 
free incoming one-meson state with 3-momentum k relative to ~ ' s  axes, 
]k i ,k2)  is an incoming two-meson state with 3-momenta kl, k2 relative 
to 5r etc. Similarly let [0)' (= ]0)), Ik')', ]kx', k2')', �9 �9 denote an orthonormal 
basis for any other frame ~ ' ,  where k', etc. are the free meson 3-momenta 
relative to frame ~ ' .  Consider the state ]k)', where k are the same three 
numbers that appear in ]k): these states are called subjectively identical for 
frames ~ '  and ~,o, with the corresponding definition for two and higher- 
meson states. [k)' and [k~ are different (-objectively different) states of 
course, since if ~ sees a meson moving in the direction k, then these same 
three numbers for 5r define a (in general) different direction. But the name 
is justified because the state [k)' 'looks the same' to ~,o, as the state [k) 
does to s ~ 

t See section entitled ' Frame-dependence and Cut-offs ', p. 86. 
:~ These are the usual state-densities, normalized to 8-functions, properly speaking. 
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Let U(L) connect subjectively identical states of the two bases: 

I 0 / =  I0) = U(L)IO ~ 

Ik)'= U(L)Ik) (1) 

[k,, k2)' = U(L)]k,, k2), etc. 

where L is the Poincar6 group P element connecting ~ce and ~C's co- 
ordinates: x ' =  Lx =-Ax + a. U(L) transforms an orthonormal basis into 
another such and is therefore unitary. This is the definition of the representa- 
tion U(L) of P on state vector Hilbert Space adopted by us--it  is the same 
definition used in current QFT. [Note that we can write mathematically 
Ik)=a*(k)[0) ,  ]k) '=a '*(k)[0) ' ,  etc., hence write equivalently to (1) 
a ' (k )=  U(L)a(k)U(L) -1 and the same thing for the '4-dimensional' 
(covariant) operators a'(k) and a(k).] 

Consider now a scalar (=spinless) physical field (the 'meson') for 
mathematical simplicity. A quantum field theory should require that each 
frame ~ disposes of a one (space-time)-component operator-valued field: 

-+ ~(s ~z~, _+ ~(~cf,), etc. N.B., there is nothing in either the Rela- 
tivity Principle or general physical theory which forces us to assume that 
the 'meson' must be represented by the same mathematical field for all 
observers'~ (which can be referred to any frame of course), therefore for the 
time being we keep full generality by allowing ~ ( ~ )  and 5b(~a') to be the 
(possibly different) mathematical fields representing the 'meson' for frames 

and 5C respectively, qS(x;S(') is ~ ' s  field referred to his own frame, 
and ~'(x'; ~q~a,) is 5C's field referred to his own frame, 'frame' meaning both 
in Minkowski Space and Hilbert Space, we recall, qS(~.q a') can be referred to 
frame ~.cr in which case it is written ~(x; 5q'). It is a scalar, thus by definition 
~(x; 5r = q~'(x'; 5("). q~(5r and q~(Se') would be different if, when referred 
to any common frame (~q~ for example) they were different operator-valued 
functions of x: 

~(x; ~cc) =1 = ~(x; ~c(') (2) 

Conventional QFT is included in this formalism as the special case 
~ ( x ; ~ ' )  = ~ ( x ; ~ )  - q~(x), any two ~ ,  5~'. 

So having chosen the mathematical formalism, namely an ensemble 
{~(Se), qS(~'), qS(SC') . . . .  }, one for each Lorentz frame, of mathematical 
fields to represent the physical 'meson', we turn to the question of its 
transformation law under P. Namely, how is the Relativity Principle- 
complete equivalence of cr 5e', 5r expressed in this formalism ? 

Let us form certain observable c-numbers from the operator fields ~ ( ~ )  
and ~(~o,) in order to formulate the Relativity Principle. If  In) is an 

t It seems to us that this possibility was overlooked in the past for purely semantic 
reasons: 'the (physical) ~r-rneson field', being singular in the linguistic structure, inevitably 
forced the association of a unique mathematical field 4,(x), 'the (mathematical) ~r-meson 
field', to it. 
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n-particle state of ~ ' s  basis, n standing for a particular set of n-momenta, 
and similarly for In')', consider the c-numbers 

(role(x; 5e)[n), ' (m' lr  ~ ' ) [ n ' ) '  (3) 

These represent expectation values or more generally transition matrix 
elements, in principle all observable. In this notation In)' is the element of 
~ " s  basis subjectively identical to In), i.e., n stands for one and the same 
set of numbers in the two cases. Similarly two events P'  and P will be called 
subjectively identical if they have numerically the same coordinates relative 
to frames ~ '  and oW respectively: x' = x. 

Now we can put the Relativity Principle verbally this way: 

Relativity Principle: if two equivalent observers do the 
same (=  subjectively the same !) experiment, they must 
get identical numbers (4) 

Translating this into the language of the matrix elements (3), this means 
that if n' = n, m' = m, and x' = x (i.e., the subjective identity of the corle- 
sponding states and of the two events) then 

'(mlqS'(x; ~-r = (mlr oL-q~ [n), all m, n, x (5) 

But now we can use (1) to write In)' = U(L)[n) and '(m[ = (m[ U(L) -1. 
Then since the {In)} and {Ira)} are complete we can 'cross them out' in (5) 
to infer: 

Relativistic invariance (in passive form) 

4'(x; d~') = U(L) q6(x; oL.W) U(L)- ' ,  oL, W' = L - 1  ~ ( '  (6) 

where the notation d e ' =  L -1 oLW is explainedt in a previous paper (Ingra- 
ham, 1962) and many places elsewhere in our work. We can put this into 
'active form' (=  only components of both fields relative to one frame, say 
~ ,  occurring) by using the scalarity of ~ ( ~ ' )  which implies $ ' ( x ; s  
4( L-  1 x; ~ ' ) .  Thus : 

Relativistic invariance (in active form) 

4(L-1 x;~Cr = U(L)4(x ;  ~Z~) U(L) - ' ,  ~.~' = L-X ~L- c~ (7) 

Equations (6) or (7) are the sought for relativistic transformation law of 
frame-dependent quantum fields. In the special case of no frame-deper~- 
dence, (7), for example, becomes 

4(L -1 x) = U(L) ~()c) U(L)- '  (8) 

the familiar law of present-day QFT. 

"r It is sufficient to say that oW, = L -t ~ is equivalent to x' = Lx -~ Ax + a. The notation 
is suggested by the fact that if n(oW) is the unit time-like vector aligned along ~a's positive 
time axis, and similarly for n(~e'), then 

n(La,)u = A-lu v(s 
where (N.B. !) the unprimed indices refer to frame s [thus n(de) ~ = (0001)]. 
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Frame-dependence and Cut-offs 

In view of wide-spread misunderstanding of this proposal, we wish to 
supplement the precise formulation above with some further qualitative 
remarks. 

This more general transformation law (6) or (7) is no way an abandon- 
ment of strict relativistic invariance. That is, there is no preferred frame, or 
frames; all inertial frames are still strictly equivalent. What do we mean by 
that ? Simply that any two observers, if they do corresponding experiments, 
get exactly the same numbers. [The precise formulation is definition (4), 
above, and its verification, equation (5).] Not even the strictest exponent 
of the status quo could quarrel with this as the basic meaning of 'relativistic 
invariance', nor argue that this is a relaxation or abandonment of the same. 
It is profoundly different from nonrelativistic theories with cut-offs. There, 
one particular frame is preferred, therefore giving different numbers for 
experiments performed in this frame, as against those performed in others. 

Now using the time-like unit vector n one can introduce the spatial 
momentum squared (relative to n) 

k• 2-- k 2 d- (n.k) 2 >/0 

which is positive for any k, and exploiting this, achieve a cut-off in fields 
and S-operator consistent with all general demands, as we have shown 
elsewhere.t Frame-dependence is introduced through explicit dependence 
on n, which can be identified with a frame, its rest frame. The fallacious 
counter-argument then proceeds as follows: 'You have a unit time-like 
vector n in your fields and S-operator. But this certainly prefers a frame, 
namely the rest frame, in which the components n ~ are (0001). Therefore 
relativistic invariance is violated, Q.E.D.' 

The fallacy enters via the phrase 'a unit time-like vector'. In a theory 
satisfying the general relativity criterion (6) or (7), not one such vector, 
but all unit time-like vectors must enter. They can be identified with 
Lorentz frames ~ as explained, and labelled n(54'). Since all n(5~) enter, 
none is preferred. We give an example to clarify this. 

Observer 5r does a scattering experiment with incoming and outgoing 
particles of momenta Pl, P2,... and Pl', P2', . . .  respectively. His S-matrix 
element, nonsingular because of the cut-off made possible by the n(SF)- 
dependence, is a function of the numbers pl,  P2,.. . ;  P~', P2',... and 
(0001) -  n ( ~ )  ~, ~#'s unit normal referred to his own frame. Equivalent 
observer ~q~' does the 'corresponding' experiment, i.e., with momenta 
Pl, P2,..- and p~', P 2 ' ,  . . . .  the same numbers, but now meaning momenta 
referred to his frame. In his matrix element he uses his normal n(~L#') 
referred to his own frame, namely n(SC')u' = (0001). Thus he gets numeri- 
cally the same S-matrix element. N.B. ~q~' does not use n(~q~ referred to 
his frame, namely n(~)~'~-(0001), which would introduce a preferred 
frame and breakdown of equivalence. 

t See the list of references given in Ingraham, R. L. (1967). Renormalization Theory 
of Quantum Field Theory with a Cut-off, Chapter 13. Gordon and Breach, London. 
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Thus there is the possibility of well-defined S-matrix elements and at the 
same time no relaxation of strict equivalence of Lorentz frames. 

This freedom has been bought at the expense of allowing not one but a 
multiplicity of fields ~(A ~ and S-operators S(Aa). They transform among 
themselves according to (7) and 

S ( L  -1 ~ )  = U(L) S(5( ')  U(L) - l  (9) 

which follows from it. The reader who has followed the argument this far 
may now wonder whether this multiplicity of fields and S-operators does 
not immediately contradict experiment. The fact is that an experiment 
which could decide this has never been performed. 

The n(AZ')-dependence will enter multiplied by a small length A (the 
cut-off), thus will be slight. So very high energies would be necessary in any 
case. But finding evidence of a cut-off in a high-energy scattering experiment 
would not be conclusive, since the same effect could conceivably be pro- 
duced by a frame-independent cut-off (if that were possible, which we do 
not believe). What is needed is a comparison of scattering performed in 
relatively moving frames at the same values of s and t and transformed to a 
common frame. For example, elastic scattering performed in both the 
CM and Lab frames of a pair of particles, and the Lab frame cross-section 
transformed to the CM. For then the two S-matrix elements would involve 
the different numbers n(  ~((~CM)# = (0001) and n(AeL,b) # :# (0001), where the 
index/~ refers to CM frame components. 

Numerical calculations for pure quantum electrodynamical processes 
(ee and e+e - elastic scattering), where perturbation theory should be good, 
have been made and presented elsewhere (Ingraham, 1965). 

To our knowledge, such an experiment has never been done. Note that 
for ee and e+e - scattering, the Lab energy would have to be as high as 
possible to show up the presence of the frame-dependence (probably 
PLab~ > 10 GeV/c), while because of the smallness of the electron mass, the 
corresponding CM energy is quite low: PcM " 50 MeV/c. 
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